Title: | Wrappers for 'mlpack' |
---|---|
Description: | A collection of wrappers for the 'mlpack' package that allows passing formula as their argument. |
Authors: | Akiru Kato [aut, cre] |
Maintainer: | Akiru Kato <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.0.2 |
Built: | 2024-11-17 04:23:58 UTC |
Source: | https://github.com/paithiov909/baritsu |
A wrapper around mlpack::adaboost()
that allows passing a formula.
adaboost( formula = NULL, data = NULL, epochs = 1000, tolerance = 1e-10, weak_learner = c("decision_stump", "perceptron"), x = NULL, y = NULL )
adaboost( formula = NULL, data = NULL, epochs = 1000, tolerance = 1e-10, weak_learner = c("decision_stump", "perceptron"), x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
epochs |
The maximum number of boosting iterations to be run (0 will run until convergence.) |
tolerance |
The tolerance for change in values of the weighted error during training. |
weak_learner |
Weak learner to use. Either "decision_stump" or "perceptron". |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_ab
.
mlpack::adaboost()
predict.baritsu_ab()
A wrapper around mlpack::decision_tree()
that allows passing a formula.
decision_trees( formula = NULL, data = NULL, tree_depth = 0, min_n = 20, minimum_gain_split = 1e-07, weights = NULL, x = NULL, y = NULL )
decision_trees( formula = NULL, data = NULL, tree_depth = 0, min_n = 20, minimum_gain_split = 1e-07, weights = NULL, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
tree_depth |
Maximum depth of the tree. |
min_n |
Minimum number of data points in a leaf. |
minimum_gain_split |
Minimum gain required to split an internal node. |
weights |
Weights for each observation. |
x |
Design matrix. |
y |
Response matrix. |
To prevent masking of parsnip::decision_tree()
,
this function is named decision_trees
(plural form!)
An object of class baritsu_dt
.
mlpack::decision_tree()
predict.baritsu_dt()
A wrapper around mlpack::hoeffding_tree()
that allows passing a formula.
hoeffding_trees( formula = NULL, data = NULL, confidence_factor = 0.95, sample_size = 10, max_samples = 5000, min_samples = 100, info_gain = FALSE, batch_mode = FALSE, numeric_split_strategy = c("binary", "domingos"), num_breaks = 10, observations_before_binning = 100, x = NULL, y = NULL )
hoeffding_trees( formula = NULL, data = NULL, confidence_factor = 0.95, sample_size = 10, max_samples = 5000, min_samples = 100, info_gain = FALSE, batch_mode = FALSE, numeric_split_strategy = c("binary", "domingos"), num_breaks = 10, observations_before_binning = 100, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
confidence_factor |
Confidence before splitting (between 0 and 1). |
sample_size |
Number of passes to take over the dataset. |
max_samples |
Maximum number of samples before splitting. |
min_samples |
Minimum number of samples before splitting. |
info_gain |
Logical. If set, information gain is used instead of Gini impurity for calculating Hoeffding bounds. |
batch_mode |
Logical. If true, samples will be considered in batch instead of as a stream. This generally results in better trees but at the cost of memory usage and runtime. |
numeric_split_strategy |
The splitting strategy to use for numeric features. |
num_breaks |
If the "domingos" split strategy is used, this specifies the number of bins for each numeric split. |
observations_before_binning |
If the "domingos" split strategy is used, this specifies the number of samples observed before binning is performed. |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_ht
.
mlpack::hoeffding_tree()
predict.baritsu_ht()
A wrapper around mlpack::linear_regression()
and mlpack::lars()
that allows passing a formula.
linear_regression( formula = NULL, data = NULL, lambda1 = 0, lambda2 = 0, no_intercept = FALSE, no_normalize = FALSE, use_cholesky = FALSE, x = NULL, y = NULL )
linear_regression( formula = NULL, data = NULL, lambda1 = 0, lambda2 = 0, no_intercept = FALSE, no_normalize = FALSE, use_cholesky = FALSE, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
lambda1 |
Regularization parameter for L1-norm penalty. |
lambda2 |
Regularization parameter for L2-norm penalty. |
no_intercept |
Logical; passed to |
no_normalize |
Logical; passed to |
use_cholesky |
Logical; passed to |
x |
Design matrix. |
y |
Response matrix. |
When the lambda1 is 0, this function
fallbacks to mlpack::linear_regression()
for performance.
An object of class baritsu_lr
.
mlpack::linear_regression()
mlpack::lars()
predict.baritsu_lr()
A wrapper around mlpack::bayesian_linear_regression()
that allows
passing a formula.
linear_regression_bayesian( formula = NULL, data = NULL, center = FALSE, scale = FALSE, x = NULL, y = NULL )
linear_regression_bayesian( formula = NULL, data = NULL, center = FALSE, scale = FALSE, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
center |
Logical; if enabled, centers the data and fits the intercept. |
scale |
Logical; if enabled, scales each feature by their standard deviations. |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_blr
.
mlpack::bayesian_linear_regression()
predict.baritsu_blr()
A wrapper around mlpack::linear_svm()
that allows passing a formula.
linear_svm( formula = NULL, data = NULL, margin = 1, penalty = 1e-04, epochs = 1000, no_intercept = FALSE, tolerance = 1e-10, optimizer = c("lbfgs", "psgd"), stop_iter = 50, learn_rate = 0.01, shuffle = FALSE, seed = 0, x = NULL, y = NULL )
linear_svm( formula = NULL, data = NULL, margin = 1, penalty = 1e-04, epochs = 1000, no_intercept = FALSE, tolerance = 1e-10, optimizer = c("lbfgs", "psgd"), stop_iter = 50, learn_rate = 0.01, shuffle = FALSE, seed = 0, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
margin |
Margin of difference between correct class and other classes. |
penalty |
L2-regularization constant. |
epochs |
Maximum iterations for optimizer (0 indicates no limit).
This argument is passed as |
no_intercept |
Logical; passed to |
tolerance |
Convergence tolerance for optimizer. |
optimizer |
Optimizer to use for training ("lbfgs" or "psgd"). |
stop_iter |
Maximum number of full epochs over dataset for parallel SGD. |
learn_rate |
Step size for parallel SGD optimizer. in which data points are visited for parallel SGD. |
shuffle |
Logical; if true, doesn't shuffle the order. |
seed |
Random seed. If 0, |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_svm
.
mlpack::linear_svm()
predict.baritsu_svm()
A wrapper around mlpack::logistic_regression()
that allows passing a formula.
logistic_regression( formula = NULL, data = NULL, penalty = 1e-04, epochs = 1000, decision_boundary = 0.5, tolerance = 1e-10, optimizer = c("lbfgs", "sgd"), batch_size = 64, learn_rate = 0.01, x = NULL, y = NULL )
logistic_regression( formula = NULL, data = NULL, penalty = 1e-04, epochs = 1000, decision_boundary = 0.5, tolerance = 1e-10, optimizer = c("lbfgs", "sgd"), batch_size = 64, learn_rate = 0.01, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
penalty |
L2-regularization constant. |
epochs |
Maximum number of iterations. |
decision_boundary |
Decision boundary for prediction; if the logistic function for a point is less than the boundary, the class is taken to be 0; otherwise, the class is 1. |
tolerance |
Convergence tolerance for optimizer. |
optimizer |
Optimizer to use for training ("lbfgs" or "sgd"). |
batch_size |
Batch size for SGD. |
learn_rate |
Step size for SGD optimizer. |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_lgr
.
mlpack::logistic_regression()
predict.baritsu_lgr()
A wrapper around mlpack::nbc()
that allows passing a formula.
naive_bayes( formula = NULL, data = NULL, incremental_variance = FALSE, x = NULL, y = NULL )
naive_bayes( formula = NULL, data = NULL, incremental_variance = FALSE, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
incremental_variance |
Logical; passed to |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_nbc
.
mlpack::nbc()
predict.baritsu_nbc()
A wrapper around mlpack::perceptron()
that allows passing a formula.
perceptron(formula = NULL, data = NULL, epochs = 100, x = NULL, y = NULL)
perceptron(formula = NULL, data = NULL, epochs = 100, x = NULL, y = NULL)
formula |
A formula. |
data |
A data.frame. |
epochs |
Maximum number of iterations. |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_prc
.
mlpack::perceptron()
predict.baritsu_prc()
Predicts with new data using a stored mlpack model.
## S3 method for class 'baritsu_ab' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_dt' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_ht' predict(object, newdata, ...) ## S3 method for class 'baritsu_blr' predict(object, newdata, ...) ## S3 method for class 'baritsu_lr' predict(object, newdata, ...) ## S3 method for class 'baritsu_lgr' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_prc' predict(object, newdata, ...) ## S3 method for class 'baritsu_sr' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_nbc' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_rf' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_svm' predict(object, newdata, type = c("both", "class", "prob"), ...)
## S3 method for class 'baritsu_ab' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_dt' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_ht' predict(object, newdata, ...) ## S3 method for class 'baritsu_blr' predict(object, newdata, ...) ## S3 method for class 'baritsu_lr' predict(object, newdata, ...) ## S3 method for class 'baritsu_lgr' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_prc' predict(object, newdata, ...) ## S3 method for class 'baritsu_sr' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_nbc' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_rf' predict(object, newdata, type = c("both", "class", "prob"), ...) ## S3 method for class 'baritsu_svm' predict(object, newdata, type = c("both", "class", "prob"), ...)
object |
An object out of baritsu function. |
newdata |
A data.frame. |
type |
Type of prediction. One of "both", "class", or "prob". |
... |
Not used. |
A tibble that contains the predictions and/or probabilities
(and also the standard deviations of the predictive distribution
only for predict.baritsu_blr
).
A wrapper around mlpack::random_forest()
that allows passing a formula.
random_forest( formula = NULL, data = NULL, mtry = 0, trees = 10, min_n = 1, maximum_depth = 0, minimum_gain_split = 0, seed = 0, x = NULL, y = NULL )
random_forest( formula = NULL, data = NULL, mtry = 0, trees = 10, min_n = 1, maximum_depth = 0, minimum_gain_split = 0, seed = 0, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
mtry |
Subspace dimension. If 0, autoselects the square root of data dimensionality. |
trees |
Number of trees. |
min_n |
Minimum number of data points in a leaf. |
maximum_depth |
Maximum depth of the tree. |
minimum_gain_split |
Minimum gain required to split an internal node. |
seed |
Random seed. If 0, |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_rf
.
mlpack::random_forest()
predict.baritsu_rf()
A wrapper around mlpack::softmax_regression()
that allows passing a formula.
softmax_regression( formula = NULL, data = NULL, penalty = 0.001, epochs = 400, no_intercept = FALSE, x = NULL, y = NULL )
softmax_regression( formula = NULL, data = NULL, penalty = 0.001, epochs = 400, no_intercept = FALSE, x = NULL, y = NULL )
formula |
A formula. |
data |
A data.frame. |
penalty |
L2-regularization constant. |
epochs |
Maximum number of iterations. |
no_intercept |
Logical; passed to |
x |
Design matrix. |
y |
Response matrix. |
An object of class baritsu_sr
.
mlpack::softmax_regression()
predict.baritsu_sr()