Package 'baritsu'

Title: Wrappers for 'mlpack'
Description: A collection of wrappers for the 'mlpack' package that allows passing formula as their argument.
Authors: Akiru Kato [aut, cre]
Maintainer: Akiru Kato <[email protected]>
License: MIT + file LICENSE
Version: 0.0.2
Built: 2024-11-17 04:23:58 UTC
Source: https://github.com/paithiov909/baritsu

Help Index


AdaBoost

Description

A wrapper around mlpack::adaboost() that allows passing a formula.

Usage

adaboost(
  formula = NULL,
  data = NULL,
  epochs = 1000,
  tolerance = 1e-10,
  weak_learner = c("decision_stump", "perceptron"),
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

epochs

The maximum number of boosting iterations to be run (0 will run until convergence.)

tolerance

The tolerance for change in values of the weighted error during training.

weak_learner

Weak learner to use. Either "decision_stump" or "perceptron".

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_ab.

See Also

mlpack::adaboost() predict.baritsu_ab()


Decision trees

Description

A wrapper around mlpack::decision_tree() that allows passing a formula.

Usage

decision_trees(
  formula = NULL,
  data = NULL,
  tree_depth = 0,
  min_n = 20,
  minimum_gain_split = 1e-07,
  weights = NULL,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

tree_depth

Maximum depth of the tree.

min_n

Minimum number of data points in a leaf.

minimum_gain_split

Minimum gain required to split an internal node.

weights

Weights for each observation.

x

Design matrix.

y

Response matrix.

Details

To prevent masking of parsnip::decision_tree(), this function is named decision_trees (plural form!)

Value

An object of class baritsu_dt.

See Also

mlpack::decision_tree() predict.baritsu_dt()


Hoeffding trees

Description

A wrapper around mlpack::hoeffding_tree() that allows passing a formula.

Usage

hoeffding_trees(
  formula = NULL,
  data = NULL,
  confidence_factor = 0.95,
  sample_size = 10,
  max_samples = 5000,
  min_samples = 100,
  info_gain = FALSE,
  batch_mode = FALSE,
  numeric_split_strategy = c("binary", "domingos"),
  num_breaks = 10,
  observations_before_binning = 100,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

confidence_factor

Confidence before splitting (between 0 and 1).

sample_size

Number of passes to take over the dataset.

max_samples

Maximum number of samples before splitting.

min_samples

Minimum number of samples before splitting.

info_gain

Logical. If set, information gain is used instead of Gini impurity for calculating Hoeffding bounds.

batch_mode

Logical. If true, samples will be considered in batch instead of as a stream. This generally results in better trees but at the cost of memory usage and runtime.

numeric_split_strategy

The splitting strategy to use for numeric features.

num_breaks

If the "domingos" split strategy is used, this specifies the number of bins for each numeric split.

observations_before_binning

If the "domingos" split strategy is used, this specifies the number of samples observed before binning is performed.

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_ht.

See Also

mlpack::hoeffding_tree() predict.baritsu_ht()


Linear regression

Description

A wrapper around mlpack::linear_regression() and mlpack::lars() that allows passing a formula.

Usage

linear_regression(
  formula = NULL,
  data = NULL,
  lambda1 = 0,
  lambda2 = 0,
  no_intercept = FALSE,
  no_normalize = FALSE,
  use_cholesky = FALSE,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

lambda1

Regularization parameter for L1-norm penalty.

lambda2

Regularization parameter for L2-norm penalty.

no_intercept

Logical; passed to mlpack::lars().

no_normalize

Logical; passed to mlpack::lars().

use_cholesky

Logical; passed to mlpack::lars().

x

Design matrix.

y

Response matrix.

Details

When the lambda1 is 0, this function fallbacks to mlpack::linear_regression() for performance.

Value

An object of class baritsu_lr.

See Also

mlpack::linear_regression() mlpack::lars() predict.baritsu_lr()


Bayesian linear regression

Description

A wrapper around mlpack::bayesian_linear_regression() that allows passing a formula.

Usage

linear_regression_bayesian(
  formula = NULL,
  data = NULL,
  center = FALSE,
  scale = FALSE,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

center

Logical; if enabled, centers the data and fits the intercept.

scale

Logical; if enabled, scales each feature by their standard deviations.

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_blr.

See Also

mlpack::bayesian_linear_regression() predict.baritsu_blr()


L2-regularized support vector machine

Description

A wrapper around mlpack::linear_svm() that allows passing a formula.

Usage

linear_svm(
  formula = NULL,
  data = NULL,
  margin = 1,
  penalty = 1e-04,
  epochs = 1000,
  no_intercept = FALSE,
  tolerance = 1e-10,
  optimizer = c("lbfgs", "psgd"),
  stop_iter = 50,
  learn_rate = 0.01,
  shuffle = FALSE,
  seed = 0,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

margin

Margin of difference between correct class and other classes.

penalty

L2-regularization constant.

epochs

Maximum iterations for optimizer (0 indicates no limit). This argument is passed as max_iterations, not as epochs for mlpack::linear_svm().

no_intercept

Logical; passed to mlpack::linear_svm().

tolerance

Convergence tolerance for optimizer.

optimizer

Optimizer to use for training ("lbfgs" or "psgd").

stop_iter

Maximum number of full epochs over dataset for parallel SGD.

learn_rate

Step size for parallel SGD optimizer. in which data points are visited for parallel SGD.

shuffle

Logical; if true, doesn't shuffle the order.

seed

Random seed. If 0, std::time(NULL) is used internally.

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_svm.

See Also

mlpack::linear_svm() predict.baritsu_svm()


L2-regularized logistic regression

Description

A wrapper around mlpack::logistic_regression() that allows passing a formula.

Usage

logistic_regression(
  formula = NULL,
  data = NULL,
  penalty = 1e-04,
  epochs = 1000,
  decision_boundary = 0.5,
  tolerance = 1e-10,
  optimizer = c("lbfgs", "sgd"),
  batch_size = 64,
  learn_rate = 0.01,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

penalty

L2-regularization constant.

epochs

Maximum number of iterations.

decision_boundary

Decision boundary for prediction; if the logistic function for a point is less than the boundary, the class is taken to be 0; otherwise, the class is 1.

tolerance

Convergence tolerance for optimizer.

optimizer

Optimizer to use for training ("lbfgs" or "sgd").

batch_size

Batch size for SGD.

learn_rate

Step size for SGD optimizer.

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_lgr.

See Also

mlpack::logistic_regression() predict.baritsu_lgr()


Parametric naive Bayes classifier

Description

A wrapper around mlpack::nbc() that allows passing a formula.

Usage

naive_bayes(
  formula = NULL,
  data = NULL,
  incremental_variance = FALSE,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

incremental_variance

Logical; passed to mlpack::nbc().

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_nbc.

See Also

mlpack::nbc() predict.baritsu_nbc()


Single level neural network

Description

A wrapper around mlpack::perceptron() that allows passing a formula.

Usage

perceptron(formula = NULL, data = NULL, epochs = 100, x = NULL, y = NULL)

Arguments

formula

A formula.

data

A data.frame.

epochs

Maximum number of iterations.

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_prc.

See Also

mlpack::perceptron() predict.baritsu_prc()


Prediction using mlpack via baritsu

Description

Predicts with new data using a stored mlpack model.

Usage

## S3 method for class 'baritsu_ab'
predict(object, newdata, type = c("both", "class", "prob"), ...)

## S3 method for class 'baritsu_dt'
predict(object, newdata, type = c("both", "class", "prob"), ...)

## S3 method for class 'baritsu_ht'
predict(object, newdata, ...)

## S3 method for class 'baritsu_blr'
predict(object, newdata, ...)

## S3 method for class 'baritsu_lr'
predict(object, newdata, ...)

## S3 method for class 'baritsu_lgr'
predict(object, newdata, type = c("both", "class", "prob"), ...)

## S3 method for class 'baritsu_prc'
predict(object, newdata, ...)

## S3 method for class 'baritsu_sr'
predict(object, newdata, type = c("both", "class", "prob"), ...)

## S3 method for class 'baritsu_nbc'
predict(object, newdata, type = c("both", "class", "prob"), ...)

## S3 method for class 'baritsu_rf'
predict(object, newdata, type = c("both", "class", "prob"), ...)

## S3 method for class 'baritsu_svm'
predict(object, newdata, type = c("both", "class", "prob"), ...)

Arguments

object

An object out of baritsu function.

newdata

A data.frame.

type

Type of prediction. One of "both", "class", or "prob".

...

Not used.

Value

A tibble that contains the predictions and/or probabilities (and also the standard deviations of the predictive distribution only for predict.baritsu_blr).


Random forests

Description

A wrapper around mlpack::random_forest() that allows passing a formula.

Usage

random_forest(
  formula = NULL,
  data = NULL,
  mtry = 0,
  trees = 10,
  min_n = 1,
  maximum_depth = 0,
  minimum_gain_split = 0,
  seed = 0,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

mtry

Subspace dimension. If 0, autoselects the square root of data dimensionality.

trees

Number of trees.

min_n

Minimum number of data points in a leaf.

maximum_depth

Maximum depth of the tree.

minimum_gain_split

Minimum gain required to split an internal node.

seed

Random seed. If 0, std::time(NULL) is used internally.

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_rf.

See Also

mlpack::random_forest() predict.baritsu_rf()


Softmax regression

Description

A wrapper around mlpack::softmax_regression() that allows passing a formula.

Usage

softmax_regression(
  formula = NULL,
  data = NULL,
  penalty = 0.001,
  epochs = 400,
  no_intercept = FALSE,
  x = NULL,
  y = NULL
)

Arguments

formula

A formula.

data

A data.frame.

penalty

L2-regularization constant.

epochs

Maximum number of iterations.

no_intercept

Logical; passed to mlpack::softmax_regression().

x

Design matrix.

y

Response matrix.

Value

An object of class baritsu_sr.

See Also

mlpack::softmax_regression() predict.baritsu_sr()